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ABSTRACT

Hidden Markov model (HMM) can be categorised as an ergodic model or a left-to-right model. The 
categorization is subject to its state transition. An ergodic Hidden Markov model has full state transitions 
but a left-to-right hidden Markov model has partial state transitions. A Bakis Hidden Markov model 
(BHMM) is a special type of the left-to-right Hidden Markov model. State sequence for a BHMM is 
invisible but this research is able to track the most likelihood state sequence using Viterbi algorithm. 
However, while tracking the optimal state sequence for BHMM, the conventional algorithm does 
not provide a measure of uncertainty which is present in the solution. This issue can be overcome by 
the proposed novel algorithm, namely, BHMM entropy-based forward algorithm (BHMM-EFA) for 
computing state entropy of a BHMM. This algorithm is based on a decreasing-ladder trellis structure 
which provides a clear picture on how the entropy associated with the optimal state sequence is 
determined. Therefore, the novel algorithm requires  calculations for tracking the optimal state 
sequence of a first-order BHMM where T is the length of the observational sequence and N is the number 
of hidden states. 

Keywords: Bakis Hidden Markov model, entropy, forward probability, state transition, uncertainty, 
Viterbi Algorithm

INTRODUCTION

A left-to-right Hidden Markov Model (LR-
HMM) is an important subclass of Hidden 
Markov Models for modelling time series 
data (Rabiner, 1989). This subclass model is 
a single directional structure model and hence 
named a left-to-right Hidden Markov Model. 
This subclass of model structure is useful in 
applications such as speech recognition (Gales 
& Young, 2008; Nogueries et al., 2001; Juang 
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& Rabiner, 1991) and DNA sequence analysis (Regad, 2008; Loytynoja & Milinkovitch, 
2003). HMM is a statistical sequence model where the observational sequence is generated 
independently but conditioned on a hidden state Markov chain. The index of the hidden state 
for LR-HMM either increases or maintains the same state as time progresses. As a result, the 
transition matrix of LR-HMM is an upper triangular matrix with zeros on the below of the main 
diagonal entries, but there is at least one non-zero entry on or above the diagonal per column. 
State transitions between non-adjacent states are permitted in this LR-HMM, for example, a 
transition from state 2 to state 6. In some applications such as speech recognition (Nogueries 
et al., 2001), it requires more constraints on the state transition structure so that only transitions 
among neighbouring states are allowed. This type of special LR-HMM is called as a Bakis 
Hidden Markov Model (BHMM). There are two ways of state transitions for BHMM: self-state 
transition (i.e., from state i to state i) and one-step transitions (i.e., from state i to state i + 1). 
Hence, there is at least one entry for the main diagonal and the first upper diagonal is non-
zero per row for the state transition matrix structure in a BHMM. The hidden state sequence 
of HMM can be tracked from a given observational sequence and the restored state has many 
applications especially when the hidden state sequence has meaningful interpretations in terms 
of prediction. For example, Ciriza et al. (2011) determined the optimal printing rate based on 
the HMM model parameter and an optimal time-out which is based on the restored states. 
Viterbi algorithm is the most common technique for tracking hidden state sequence (Rabiner, 
1989). However, it does not measure the uncertainty present in the solution. Proakis and Salehi 
(2002) proposed a method for measuring the error of a single state. This method is unable 
to measure the error of the entire state sequence computed by Viterbi algorithm. Hernando 
et al. (2005) proposed a method of using entropy for measuring the uncertainty of the state 
sequence of a first-order HMM tracked from a single observational sequence with a length of 
T. The method is based on the forward recursion algorithm integrated with entropy. Mann and 
McCallum (2007) developed an algorithm for computing the subsequent constrained entropy 
of HMM which is similar to probabilistic model conditional random fields (CRF). Ilic (2011) 
developed an algorithm based on forward-backward recursion over the entropy semiring, 
namely Entropy Semiring Forward-backward algorithm (ESRFB) for a first-order HMM with 
a single observational sequence. ESRFB has lower memory requirement as compared with 
Mann and McCallum’s algorithm for subsequent constrained entropy computation.

This paper is organised as follows. In section 2, a Bakis Hidden Markov model is defined 
and a modified forward probability variable is introduced in a decreasing-ladder trellis structure 
diagram. In section 3, an algorithm is proposed for computing state entropy for a Bakis 
Hidden Markov Model, namely BHMM entropy-based forward algorithm (BHMM-EFA) and 
a numerical example of computing state entropy is illustrated. We discuss future research in 
section 4 on this state entropy algorithm.

FIRST-ORDER DISCRETE BAKIS HIDDEN MARKOV MODEL

In this section, definitions and notations for a first-order BHMM is introduced. These are 
followed by the definition of the modified forward probability variable for a first-order BHMM. 
These forward probability variables form the basis for the proposed algorithm, namely BHMM 
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entropy-based forward algorithm (BHMM-EFA). A trellis structure diagram is then defined and 
a a decreasing-ladder trellis structure diagram is introduced which provides a clear picture on 
how the entropy associated with the optimal state sequence of BHMM is determined.

Element of BHMM

BHMM involves two stochastic processes, namely hidden state process and observation 
process. The hidden state process cannot be directly observed. The observation sequence is 
generated by the observation process incorporated with the hidden state process. For discrete 
BHMM, it has to satisfy the following conditions:

The hidden state process  is a first-order Bakis Markov chain that satisfies

                    (1)

where qt denotes the hidden state at time t, and  where S is the finite set of hidden states. 
Note that if qt-1is at the state si then qi is either at the state si or state si+1 due to self-transition 
or one-step transition.

The observation process  is incorporated into the hidden state process according to 
the state probability distribution that satisfies 

                    (2)

where ot denotes the observation at time t, and  where V is the finite set of observation 
symbols.

The elements for a first-order discrete BHMM are as follows:

• Number of distinct hidden states, N

• Number of distinct observed symbols, M

• Length of observed outputs, T

• Observed output sequence, 

• Hidden state sequences, 

• Possible values for each state, 

• Possible symbols per observation, 

• Initial hidden state probability vector, πi

 πi  is the probability that the model will start from state si 

 

• State transition probability matrix, 
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A is the two-dimensional state transition probability matrix, and aij, is the probability of a 
transition to state sj given that it has had a transition from state si where .

      

• Emission output probability matrix, 

B is the two-dimensional emission output probability matrix, and  is a probability of 
observing vm in state si where .

       

For a first-order discrete BHMM, parameters by using the components of  are 
summarised.

Note that throughout this paper, we will use the following notations.

• q1:t denotes q1,q2, ...,qt

• o1:t denotes o1,o2, ...,ot

Forward Probability for BHMM

Hernando et al. (2005) proposed an algorithm that incorporated the forward recursion process 
for computing the entropy of state sequence. Ilic (2011) also developed an algorithm based 
on forward-backward recursion process for state entropy computation. Both algorithms are 
formulated for a first-order HMM with a single observation sequence. The conventional 
forward probability based on the state transition structure of BHMM is modified. The BHMM 
has two types of state transition, which are self-state and one-step transition. These forward 
probabilities are computed recursively in the recursion and the termination phase. The 
algorithms proposed by Hernando et al. (2005) and Ilic (2011) require  calculations 
for computing state entropy of a generalised first-order HMM. The new algorithm performs 
state entropy computation that requires  due to its modified forward probability. The 
conventional forward probability for a first-order HMM is defined as follows (Rabiner, 1989):

Definition 1. The conventional forward variable  for a first-order HMM is a joint 
probability of the partial observation sequence  and the hidden state si of at time t  
where . It can be denoted as 

                  (3)
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From (3), t = 1 and , the initial forward variable can be expressed as

                  (4)

From (3), (4), the recursive forward variable for BHMM is obtained where t = 2,...,T, 

               (5)

Note that the above summation is from j-1 to j at time t due to the state transition structure 
of BHMM whereas the summation is from 1 to N for the conventional recursive forward 
probability where N is the number of the hidden states.

The recursive modified forward probability in (5) can be represented in the following form

               (6)

The modified forward variable is normalised that is required as an intermediate variable in our 
proposed algorithm. The following is the definition for a normalised forward variable which 
is used for obtaining a normalising modified forward variable.

Definition 2. The normalising modified forward probability variable  in a first-order 
BHMM is defined as the probability of the hidden state of si at time given the partial observation 
sequence  where . 

                     (7)

From (4), (7), t=1 and 1 ≤ i ≤ N, the initial normalised forward variable is obtained as

      

                     (8)
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where              (9)

From (5), (7), (8) and , the following is obtained

                  (10)

where              (11)

Note that normalisation factors ri ensure the modified forward probabilities sum to one.

The normalised initial and recursive forward probabilities given by (8) and (10) are used in 
the current algorithm for computing the recursive state entropy of a first-order BHMM. The 
majority of recursive entropy computations are performed in the recursion phases that results in 

 operations. It only requires memory space of 2N since the memory space is independent 
of the length of the observational sequence. A numerical illustration is shown in section 3.2
Hernando et al. (2005) use a trellis diagram to show the structure for the recursive computation 
of the entropy. The time is shown on the horizontal axis. This diagram contains both states and 
its entropy for each time step. The Figure 1 is an example of a trellis diagram displaying the 
structure for the recursive computation of the entropy for a generalised first-order HMM with 
4 states and a length T of observational sequence.
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computation of the entropy for a generalised first-order HMM with 4 states and 

a length of T observational sequence. 

 

 

 

 

 

 

 

 
Figure 1. The evolution of a trellis structure with 4 states and a length of T

observational sequence  

 

Due to the structure of state transition for BHMM, a modified trellis structure 

diagram is introduced, namely a decreasing-ladder trellis structure diagram 

which provides a clear picture on how the entropy associated with the optimal 

state sequence of BHMM is determined. Figure 2 is an example of a 

decreasing-ladder trellis structure diagram with 4 states and 6 observations. 

Figure 1. The evolution of a trellis structure with 4 states and a length of T observational sequence
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Due to the structure of state transition for BHMM, a modified trellis structure diagram is 
introduced, namely a decreasing-ladder trellis structure diagram which provides a clear picture 
on how the entropy associated with the optimal state sequence of BHMM is determined. Figure 
2 is an example of a decreasing-ladder trellis structure diagram with 4 states and 6 observations.

13	

	

Figure 2. The evolution of a decreasing-ladder trellis structure with 4 states and 

6 observations 

 

 

 

 

 

STATE ENTROPY COMPUTATION FOR A FIRST-ORDER BHMM 

The optimal state sequence can be obtained from a given BHMM model’s 

parameters and observational sequence using the conventional Viterbi 

algorithm. This algorithm provides the solution along with its likelihood. This 

likelihood probability can be determined as follows. 
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Hence, this probability can be used as a measure of quality of the solution. The 

higher the probability of the paper’s “solution”, the better the “solution”. 

However, this conventional algorithm does not provide a clear process for 

obtaining the optimal state sequence and its likelihood probability. 

Figure 2. The evolution of a decreasing-ladder trellis structure with 4 states and 6 observations

STATE ENTROPY COMPUTATION FOR A FIRST-ORDER BHMM

The optimal state sequence can be obtained from a given BHMM model’s parameters and 
observational sequence using the conventional Viterbi algorithm. This algorithm provides the 
solution along with its likelihood. This likelihood probability can be determined as follows.

        

Hence, this probability can be used as a measure of quality of the solution. The higher the 
probability of the “solution”, the better it is. However, this conventional algorithm does not 
provide a clear process for obtaining the optimal state sequence and its likelihood probability. 
Alternatively, entropy is proposed for measuring the quality of the state sequence and using 
a decreasing-ladder trellis structure to illustrate the process of computing the possible state 
sequence along with the uncertainty.

The entropy H(X) of a random variable of X, is a measure of its uncertainty (Cover & 
Thomas, 2006). This concept for quantifying the uncertainty of the state sequence tracked by 
the BHMM’s parameter is applied and a given single observational sequence. This entropy 
can be viewed as a measure of how well the parameters for generating a certain observational 
sequence. The entropy of the state sequence equals to 0 if there is only one state sequence that 
could have generated the observation sequence as there is no uncertainty in the solution. The 
higher this entropy, the higher the uncertainty involved in tracking the hidden state. 

Entropy of a discrete random variable is defined as follows (Cover & Thomas, 2006):
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Definition 3. The entropy H(X) of a discrete random variable X with a probability mass function 
P(X=x) is defined as

                  (12)

When the log has a base of 2, the unit of the entropy is bits and it is noted that 

From (12), the entropy of the distribution for all possible state sequences is defined as follows:

           (13)

BHMM Entropy-based Forward Algorithm (BHMM-EFA) 

For this algorithm, an intermediate variable that is state entropy, Ht(sj) is required. The state 
entropy, Ht(sj) can be computed recursively using the previous one that is Ht-1(sj) (Hernando 
et al., 2005).

The state entropy for a first-order BHMM is defined as follows:

Definition 4. The state entropy, Ht(sj) in a first-order BHMM, is the entropy of all the state 
sequences that lead to state of at time , given the observations . It can be denoted as

                  (14)

From (14) and t=1, the initial state entropy variable is expressed as

                    (15)

From (14), and (15), the recursion on the entropies for , and 
is obtained as below

               (16)

where
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and

       

The auxiliary probability  where  is required for our algorithm. 
It can be computed as follows:

                (17)

For the final process,  is computed which can be expanded as follows:

              (18)

The basic entropy concept in (12) and the following basic properties of BHMM are used for 
proving lemma 1. According to a first-order BHMM, state qt-r, r ≥ 2 and qt are statistically 
independent given qt-1. The same applies to qt-r, r ≥2 and ot are statistically independent given qt-1.

The following proof is due to Hernando et. al. (2005).

Lemma 1: For a first-order BHMM, the entropy of the state sequence up to time t - 2, given 
the states at time t - 1  and the observations up to time t - 1, is conditionally independent on 
the state and observation at time t
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Proof:

      

The entropy algorithm for BHMM is based on normalised forward recursion probability 
variable, state entropy recursion variable and auxiliary probability.

From (8), (10), (15), (16), (17) and (18), the algorithm of entropy computation for a first-
order BHMM is constructed as below:

1. Initialisation: for 

         

2.  Recursion: 

 

            End 
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                 End 

         End if

End 

If 
 

      

For i = N - 1 : N

       

 End 

 

 End if

 End 

3. Termination
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Illustration

A BHMM is considered with the following model parameters π = (λ, A, B) where π is the initial 
transition probability vector, A is the state transition probability matrix and B is the emission 
probability matrix.

      

The algorithm for computing the state entropy is applied based on the observational sequence 
. The result is shown as follows.

20	

	

[ ]0001=π   , 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
5.05.000
05.05.00
005.05.0

A  and  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10000
05.05.000
005.05.00
00001

B   

The algorithm for computing the state entropy is applied based on the 

observational sequence )5,5,3,2,2,1( 6543216:1 ======= ooooooo . The 

result is shown as follows. 

 

 
Figure 3. The evolution of the decreasing-ladder trellis structure with the 

observation sequence )5,5,3,2,2,1( 6543216:1 ======= ooooooo  

 

The total entropy after each time step is displayed at the bottom of Figure 3. For 

example, after receiving the fourth observation, i.e. 

)3,2,2,1( 43214:1 ===== ooooo , it has produced two possible state sequences 

Figure 3. The evolution of the decreasing-ladder trellis structure with the observation sequence 

The total entropy after each time step is displayed at the bottom of Figure 3. For example, after 
receiving the fourth observation, i.e. , it has produced two 
possible state sequences which are  and  

 as shown by the arrows. Each possible 
state sequence has a probability of 0.5 and hence the entropy is 1 bit. After receiving the fourth 
observation, intermediate entropy and normalized forward probability for state 2 and state 3 
are computed whereas both values for state 1 and state 4 are zeros due to the structure of the 
state transition. For the fifth observation, the intermediate entropy and normalized forward 
probability for state 2, state 3 and state 4 are computed whereas both values for state 1 are zeros 
due to the structure of the state transition. The following are the required computations after 
receiving the fourth observation, i.e.  in order to compute 
the total entropy at t = 4. The model has produced only one possible state sequence that is 

 with a probability of 1 after receiving the third 
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observation. The total entropy is 0 at which t = 3 indicates that there is no uncertainty. Due 
to the structure of the state transition, at time t = 4, only two state transitions occurred that 
are the transition from state 2 at t = 3 to state 2 at t = 4 and state 2 at t = 3 to state 3 at t = 4.

From (10) and j = 2, we obtain 

From (10) and j = 3, we obtain

From (17) and i = 1, j = 2, we obtain

      

From (17) and i = 2, j = 2, we obtain

      

From (17) and i = 2, j = 3, the following is obtained

      

From (17) and i = 3, j = 3 we obtain

      

From (16), t = 4 and sj = 2, the following is obtained
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From (16), and t = 4 and sj = 3, we obtain

From (18) and t = 4, the total entropy is obtained 

After  receiving  the  sixth  observation,  i.e.  
t h e  m o d e l  h a s  p r o d u c e d  o n l y  o n e  p o s s i b l e  s t a t e  s e q u e n c e  t h a t  i s 

  w i t h  a 
probability of 1 and hence the total entropy is 0 which indicates that there is no uncertainty. 

CONCLUSION AND FUTURE WORK

An algorithm for computing the state entropy for a first-order BHMM was introduced. This 
algorithm needs to run with Viterbi algorithm in tracking the state sequence as well as the 
entropy of the distribution of the state sequence. A decreasing-ladder trellis structure is 
introduced in this paper. The algorithm can be represented in this structure diagram shows a 
clear process of obtaining the uncertainty present in state sequence. This algorithm requires 

 calculations and performs the state computation linearly with the length of observational 
sequence and the number of hidden states of BHMM. This research can be also extended for a 
discrete as well as a continuous high-order BHMM. For any generalised high-order BHMM, 
the historical state information is well explored for predicting the next state and these models 
are widely used in speech recognition.
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